Sulfato de magnesio para neuroprotección fetal: revisión de la literatura

  • Camilo Muñoz-Martínez
  • Mario Orlando Parra-Pineda

Resumen

Objetivo: revisar la evidencia disponible acerca de la efectividad y seguridad del sulfato de magnesio como neuroprotector en fetos pretérmino.

Materiales y métodos: se realizó una búsqueda de la literatura en las bases de datos, Medline, SciELO, Embase y ScienceDirect y Cochrane, utilizando los términos de búsqueda: "premature birth, cerebral palsy, magnesium sulfate", restringida a los siguientes tipos de estudios: metaanálisis, revisiones sistemáticas, guías de práctica clínica y ensayos clínicos controlados, entre el 2000 y el 2013.

Resultados: la búsqueda en las bases de datos electrónicas arrojó 31 títulos, de los cuales se excluyeron 19 estudios debido a que no respondían a la pregunta inicial, eran artículos de revisión narrativa, doble publicación, incluían estudios observacionales o se trataba de protocolos de investigación. Finalmente, se seleccionaron 12 artículos que corresponden a 5 revisiones sistemáticas, 5 ensayos clínicos controlados y 2 guías de práctica clínica. El sulfato de magnesio disminuye el riesgo de parálisis cerebral en alrededor del 30 % y de disfunción motora gruesa en un 40 %. No tiene impacto significativo en otros desenlaces como mortalidad perinatal, leucomalacia periventricular o hemorragia intraventricular. Este efecto protector es mayor en edades gestacionales más tempranas. Los eventos adversos maternos y neonatales son generalmente leves.

Conclusiones: el sulfato de magnesio utilizado en pacientes con trabajo de parto pretérmino, fase activa antes de semana 32, es un tratamiento efectivo y seguro en la prevención de la parálisis cerebral en fetos prematuros.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Camilo Muñoz-Martínez

Residente de segundo año, Obstetricia y Ginecología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá (Colombia)

Mario Orlando Parra-Pineda
Profesor Asociado, Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá (Colombia)

Referencias bibliográficas

Callaghan WD, MacDorman MF, Rasmussen SA, Qin C, Lackritz EM. The contribution of preterm birth to infant mortality rates in the United States. Pediatrics 2006;118:1566-73.

MacDorman MF, Callaghan WM, Mathews TJ, Hoyert DL, Kochanek KD. Trends in preterm-related infant mortality by race and ethnicity, United States, 1999-2004. Int J Health Serv. 2007;37:635-41.

Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379:2162-72.

Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med. 2008;359:262-73.

Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 2002;110:1220-5.

Centers for Disease Control and Prevention (CDC). Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment-- United States, 2003. MMWR Morb Mortal Wkly Rep. 2004;53:57-9.

Vincer MJ, Allen AC, Joseph KS, Stinson DA, Scott H, Wood E. Increasing prevalence of cerebral palsy among very preterm infants: a population-based study. Pediatrics. 2006;118:e1621-e1626.

Leviton A, Kuban KC, Pagano M, Brown ER, Krishnamoorthy KS, Allred EN. Maternal toxemia and neonatal ger minal matrix hemor rhage in intubated infants less than 1751 g. Obstet Gynecol. 1988;72:571-6.

van de Bor M, Verloove-Vanhorick SP, Brand R, Keirse MJ, Ruys JH. Incidence and prediction of periventricular-intraventricular hemorrhage in very preterm infants. J Perinat Med. 1987;15:333-9.

Kuban KC, Leviton A, Pagano M, Fenton T, Strassfeld R, Wolff M. Maternal toxemia is associated with reduced incidence of germinal matrix Hemorrhage in premature babies. J Child Neurol. 1992;7:70-6.

Nelson KB, Grether JK. Can magnesium sulfate reduce the risk of cerebral palsy in very low birthweight infants? Pediatrics. 1995;95:263-9.

Pham PC, Pham PA, Pham SV, Pham PT, Pham PM, Pham PT. Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis. 2014;7: 219-30.

Banai S, Tzivoni D. Drug therapy for torsade de pointes. J Cardiovasc Electrophysiol. 1993;4:206-10.

Altman D, Carroli G, Duley L, Farrell B, Moodley J, Neilson J, Smith D. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial; Magpie Trial Collaboration Group. Lancet. 2002;359:1877-90.

Which anticonvulsant for women with eclampsia? Evidence from the Collaborative Eclampsia Trial. Lancet. 1995;345:1455-63.

Mildvan AS. Role of magnesium and other divalent cations in ATP-utilizing enzymes. Magnesium. 1987;6:28-33.

Tai KK, Truong DD. NMDA receptor-mediated excitotoxicity contributes to the cerebral hypoxic injury of a rat model of posthypoxic myoclonus. Brain Res. 2007;1133:209-15.

Shogi T, Miyamoto A, Ishiguro S, Nishio A. Enhanced release of IL-1beta and TNF-alpha following endotoxin challenge from rat alveolar macrophages cultured in low-mg(2+) medium. Magnes Res. 2003;16:111-9.

Rochelson B, Dowling O, Schwartz N, Metz CN. Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HuVECs) through the NFkappaB pathway. J Reprod Immunol. 2007;73:101-7.

Killilea DW, Maier JA. A connection between magnesium deficiency and aging: new insights from cellular studies. Magnes Res. 2008;21:77-82.

Ferrè S, Baldoli E, Leidi M, Maier JA. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochim Biophys Acta. 2010;1802:952-8.

Kang SW, Choi SK, Park E, Chae SJ, Choi S, Jin Joo H, et al. Neuroprotective effects of magnesium-sulfate on ischemic injury mediated by modulating the release of glutamate and reduced of hyperreperfusion. Brain Res. 2011;1371:121-8.

Marret S, Mukendi R, Gadisseux JF, Gressens P, Evrard P. Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol. 1995;54:358-70.

Marret S, Gressens P, Gadisseux JF, Evrard P. Prevention by magnesium of excitotoxic neuronal death in the developing brain: an animal model for clinical intervention studies. Dev Med Child Neurol. 1995; 37:473-84.

Maulik D, Numagami Y, Ohnishi ST, Mishra OP, Delivoria-Papadopoulos M. Direct measurement of oxygen free radicals during in utero hypoxia in the fetal guinea pig brain. Brain Res. 1998;798:166-72.

Doyle LW, Crowther CA, Middleton P, Marret S. Antenatal magnesium sulfate and neurologic outcome in preterm infants: a systematic review. Obstet Gynecol. 2009;113:1327-33.

Doyle LW, Crowther CA, Middleton P, Marret S, Rouse D. Magnesium sulfate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 2009;(1):CD004661.

Marret S, Marpeau L, Zupan-Simunek V, Eurin D, Lévêque C, et al. Magnesium sulphate given before very-preterm birth to protect infant brain: the randomised controlled PREMAG trial. BJOG. 2007;114:310-8.

Rouse DJ, Hirtz DG, Thom E, Varner MW, Spong CY, Mercer BM, et al. A randomized, controlled trial of magnesium sulfate for the prevention of cerebral palsy. N Engl J Med. 2008;359:895-905.

Mittendorf R, Dambrosia J, Pr yde PG, Lee KS, Gianopoulos JG, Besinger RE, et al. Association between the use of antenatal magnesium sulfate in preterm labor and adverse health outcomes in infants. Am J Obstet Gynecol. 2002; 186:1111-8.

Crowther CA, Hiller JE, Doyle LW, Haslam RR. Australasian Collaborative Trial of Magnesium Sulphate (ACTOMg SO4) Collaborative Group. Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized controlled trial. JAMA. 2003;290:2669-76.

Magpie Trial Follow-Up Study Collaborative Group. The Magpie Trial: a randomised trial comparing magnesium sulphate with placebo for pre-eclampsia. Outcome for children at 18 months. BJOG. 2007;114:289-99.

Costantine MM, Weiner SJ. Effects of antenatal exposure to magnesium sulfate on neuroprotection and mortality in preterm infants: a metaanalysis. Obstet Gynecol. 2009; 114(2 Pt 1):354-364.

Conde-Agudelo A, Romero R. Antenatal magnesium sulfate for the prevention of cerebral palsy in preterm infants less than 34 weeks’ gestation: a systematic metaanalysis. Am J Obstet Gynecol. 2009;200:595-609.

Magnesium Sulphate for Neuroprotection. SOCG Clinical Practice Guideline. J Obstet Gynaecol Can. 2011;33:516-29.

The Antenatal Magnesium Sulphate for Neuroprotection Guideline Development Panel. Antenatal magnesium sulphate prior to preterm birth for neuroprotection of the fetus, infant and child: National clinical practice guidelines. Adelaide: The University of Adelaide; 2010.

Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154:169-76.

Stanley FJ. Sur vival and cerebral palsy in low birthweight infants: implications for perinatal care. Paediatr Perinat Epidemiol. 1992;6:298-310.

Volpe JJ. Neurology of the newborn. 4th ed. Philadelphia: W.B. Saunders; 2001.

Bain E, Middleton P, Crowther CA. Different magnesium sulphate regimens for neuroprotection of the fetus for women at risk of preterm birth. Cochrane Database of Systematic Reviews 2012, Issue 2. Art. CD009302. DOI: 10.1002/14651858.CD009302.

Publicado
2014-09-30
Cómo citar
1.
Muñoz-Martínez C, Parra-Pineda MO. Sulfato de magnesio para neuroprotección fetal: revisión de la literatura. Rev. Colomb. Obstet. Ginecol. [Internet]. 30 de septiembre de 2014 [citado 17 de septiembre de 2021];65(3):215-27. Disponible en: https://revista.fecolsog.org/index.php/rcog/article/view/49
Sección
Artículo de Revisión
Crossref Cited-by logo