Virus del papiloma humano, respuesta inmune y cáncer cervical: una relación compleja

  • Olga L. Rincón
  • Luis René Pareja
  • Sergio Jaramillo
  • Beatriz H. Aristizábal

Resumen

El cáncer de cuello uterino se considera como un grave problema de salud pública con una alta incidencia en los países en desarrollo. La infección, permanencia y replicación del virus de papiloma humano (HPV, por sus siglas en inglés) de alto riesgo a nivel cervical están relacionadas con el desarrollo del cáncer de cuello uterino. En condiciones normales, el sistema inmune es capaz de controlar y eliminar la infección por acción de la inmunidad innata, la activación de una respuesta tipo celular y la creación de anticuerpos dirigidos principalmente a las proteínas de la cápside del virión (L1 y L2). A pesar de toda la maquinaria de protección inmune del hospedero, el virus posee estrategias de evasión, conservando un número reducido de copias en las células basales proliferantes y aprovechando la corta vida natural del queratinocito.

En esta revisión se tratarán los diferentes mecanismos inmunológicos del hospedero en la respuesta a la infección por el HPV.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Olga L. Rincón
Laboratorio de Biología Molecular.
Luis René Pareja
Ginecólogo oncólogo. Unidad de Cancerología Hospital Pablo Tobón Uribe. Medellín, Colombia.
Sergio Jaramillo
Jefe de Laboratorio Clínico y de Patología. Laboratorio Clínico y de Patología Hospital Pablo Tobón Uribe. Medellín, Colombia.
Beatriz H. Aristizábal
Laboratorio de Biología Molecular.Medellín, Colombia.

Referencias

Muñoz N, Castellsagué X, de González AB, Gissamann L. Chapter 1: HPV in the etiology of human cancer. Vaccine 2006;24S3:S1-S10.

Moscicki AB. Human papilloma virus, papanicolaou smears, and the college female. Pediatr Clin North Am 2005;52:163-77.

Goldie SJ, Grima D, Kohli M, Wright TC, Weinstein M, Franco E. A comprehensive natural history model of HPV infection and cervical cancer to estimate the clinical impact of a prophylactic HPV-16/18 vaccine. Int J Cancer 2003;106:896-904.

Moscicki AB, Hills N, Shiboski S, Powell K, Jay N, Hanson E, et al. Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA 2001;285:2995-3002.

zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002;2:342-50.

Doorbar J. The papillomavirus life cycle. J Clin Virol 2005;32(Suppl 1):S7-15.

Smyth LJ, Van Poelgeest MI, Davidson EJ, Kwappenberg KM, Burt D, Sehr P, et al. Immunological responses in women with human papillomavirus type 16 (HPV-16)-associated anogenital intraepithelial neoplasia induced by heterologous prime-boost HPV-16 oncogene vaccination. Clin Cancer Res 2004;10:2954-61.

Scheurer ME, Tortolero-Luna G , Adler-Storthz K. Human papillomavirus infection: biology, epidemiology, and prevention. Int J Gynecol Cancer 2005;15:727-46.

Abdel-Hady ES, Martin-Hirsch P, Duggan-Keen M, Stern PL, Moore JV, Corbitt G, et al. Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Cancer Res 2001;61:192-6.

Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J Clin Virol 2005;32(Suppl 1):S16-24.

Hildesheim A, Wang SS. Host and viral genetics and risk of cervical cancer: a review. Virus Res 2002;89:229-40.

Molijn A, Kleter B, Quint W, van Doorn L. Molecular diagnosis of human papillomavirus (HPV) infections. J Clin Virol 2005;32(Suppl 1):S43-51.

Nicol AF, Fernandes AT, Bonecini-Almeida Mda G. Immune response in cervical dysplasia induced by human papillomavirus: the influence of human immunodeficiency virus-1 coinfection-review. Mem Inst Oswaldo Cruz 2005;100:1-12.

Mota F, Rayment N, Chong S, Singer A, Chain B. The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin Exp Immunol 1999;116:33-40.

Matthews K, Leong CM, Baxter L, Inglis E, Yun K, Backstrom BT, et al. Depletion of Langerhans cells in human papillomavirus type 16-infected skin is associated with E6-mediated down regulation of Ecadherin. J Virol 2003;77:8378-85.

Niedergang F, Didierlaurent A, Kraehenbuhl JP, Sirard JC. Dendritic cells: the host Achille’s heel for mucosal pathogens? Trends Microbiol 2004;12:79-88.

Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999;20:561-7.

Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa YF, et al. Tumor specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 2004;20:107-18.

Cho YS, Kang JW, Cho M, Cho CW, Lee S, Choe YK, et al. Down modulation of IL-18 expression by human papillomavirus type 16 E6 oncogene via binding to IL-18. FEBS Lett 2001;501:139-45.

Yang R, Wheeler CM, Chen X, Uematsu S, Takeda K, Akira S, et al. Papillomavirus capsid mutation to escape dendritic cell-dependent innate immunity in cervical cancer. J Virol 2005;79:6741-50.

Delvenne P. Immunologic response to (pre)neoplastic cervical lesions associated with human papillomavirus. Bull Mem Acad R Med Belg 2005;160:287-93.

Zhang B, Li P, Wang E, Brahmi Z, Dunn KW, Blum JS, et al. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-gamma. Virology 2003;310:100-8.

Nees M, Geoghegan JM, Munson P, Prabhu V, Liu Y, Androphy E, et al. Human papillomavirus type 16 E6 and E7 proteins inhibit differentiation-dependent expression of transforming growth factor beta2 in cervical keratinocytes. Cancer Res 2000;60:4289-98.

Little AM, Stern PL. Does HLA type predispose some individuals to cancer? Mol Med Today 1999; 5:337-42.

Ferenczy A, Coutlée F, Franco E, Hankins C. Human papillomavirus and HIV coinfection and the risk of neoplasias of the lower genital tract: a review of recent developments. Can Med Assoc J 2003;169:431-4.

Wentzensen N, Vinokurova S, von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 2004;64:3878-84.

Quayle AJ. The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells. J Reprod Immunol 2002;57:61-79.

Wang SS, Hildesheim A. Chapter 5: Viral and host factors in human papillomavirus persistence and progression. J Natl Cancer Inst Monogr 2003;31:35-40.

Chang YE, Laimins LA. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 2000;74:4174-82.

Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, Pellegrini S, et al. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon alpha. Oncogene 1999;18:5727-37.

Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, et al. Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci USA 2006;103:1516-21.

Zoodsma M, Nolte IM, Schipper M, Oosterom E, van der Steege G, de Vries EG, et al. Interleukin-10 and Fas polymorphisms and susceptibility for (pre)neoplastic cervical disease. Int J Gynecol Cancer 2005;15 (Suppl 3):282-90.

Scott M, Nakagawa M, Moscicki AB. Cell-mediated immune response to human papillomavirus infection. Clin Diagn Lab Immunol 2001;8:209-20.

Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003;421:852-6.

Stanley M. Immune responses to human papillomavirus. Vaccine 2006;24(Supl 1):S16-22.

Steele JC, Mann CH, Rookes S, Rollason T, Murphy D, Freeth MG, et al. T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia. Br J Cancer 2005;93:248-59.

Kaech SM, Wherr y EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002;2:251-62.

Santin AD, Hermonat PL, Ravaggi A, Chiriva-Internati M, Zhan D, Pecorelli S, et al. Induction of human papillomavirus-specific CD4(+) and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cer vical cancer. J Virol 1999;73:5402-10.

de Gruijl TD, Bontkes HJ, Walboomers JMM, Stukart MJ, Doekhie FS, Remmink AJ, et al. Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res 1998;58:1700-6.

van der Burg SH, Ressing ME, Kwappenberg KM, de Jong A, Straathof K, de Jong J, et al. Natural T-helper immunity against human papillomavirus type 16 (HPV16) E7-derived peptide epitopes in patients with HPV16-positive cervical lesions: identification of 3 human leukocyte antigen class II-restricted epitopes. Int J Cancer 2001;91:612-8.

Nakagawa M, Stites DP, Patel S, Farhat S, Scott M, Hills NK, et al. Persistence of human papillomavirus type 16 infection is associated with lack of cytotoxic T lymphocyte response to the E6 antigens. J Infect Dis 2000;182:595-8.

Ressing ME, van Driel WJ, Brandt RM, Kenter GG, de Jong JH, Bauknecht T, et al. Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J Immunother 2000;23:255-66.

Youde SJ, Dunbar PR, Evans EM, Fiander AN, Borysiewicz LK, Cerundolo V, et al. Use of fluorogenic histocompatibility leukocyte antigen-A*0201/HPV 16 E7 peptide complexes to isolate rare human cytotoxic T-lymphocyte- recognizing endogenous human papillomavirus antigens. Cancer Res 2000;60:365-71.

Evans EML, Man S, Evans AS, Borysiewicz LK. Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T lymphocytes. Cancer Res 1997;57:2943-50.

Frazer IH. Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 2004;4:46-54.

Welters MJ, de Jong A, van den Eeden SJ, van der Hulst JM, Kwappenberg KM, Hassane S, et al. Frequent display of human papillomavirus type 16 E6-specific memory T-helper cells in the healthy population as witness of previous viral encounter. Cancer Res 2003;63:636-41.

Carter JJ, Koutsky LA, Hughes JP, Lee SK, Kuypers J, Kiviat N, et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis 2000;181:1911-9.

Orozco JJ, Carter JJ, Koutsky LA, Galloway DA. Humoral immune response recognizes a complex set of epitopes on human papillomavirus type 6 L1 capsomers. J Virol 2005;79:9503-14.

Ho GY, Studentsov YY, Blerman R, Burk RD. Natural history of human papillomavirus type 16 virus-like particle antibodies in young women. Cancer Epidemiol Biomarkers Prev 2004;13:110-6.

Viscidi RP, Schiffman M, Hildesheim A, Herrero R, Castle PE, Bratti MC, et al. Seroreactivity to human papillomavirus (HPV) types 16, 18 or 31 and risk of subsequent HPV infection: results from a population based study in Costa Rica. Cancer Epidemiol Biomarkers Prev 2004;13:324-7.

Jochmus-Kudielka I, Schneider A, Braun R, Kimmig R, Koldovsky U, Schneweis KE, et al. Antibodies against the human papillomavirus type 16 early proteins in human sera: correlation of anti-E7 reactivity with cervical cancer. J Natl Cancer Inst 1989;81:1698-704.

Holmgren SC, Patterson NA, Ozbun MA, Lambert PF. The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J Virol 2005;79:3938-48.

Rivera R, Delgado J, Painel V, Barrero R, Larraín A. Mecanismo de infección y transformación neoplásica producido por virus papiloma humano en el epitelio cervical. Rev Chil Obstet Ginecol 2006;71:135-40.

Raj K, Berguerand S, Southern S, Doorbar J, Beard P. E1 empty set E4 protein of human papillomavirus type 16 associates with mitochondria. J Virol 2004;78:7199-207.

Keating PJ, Cromme FV, Duggan-Keen M, Snidjers PJ, Walboomers TM, Hunter RD, et al. Frequency of down-regulation of individual HLA-A and –B alleles in cervical carcinomas in relation to TAP-1 expression. Br J Cancer 1995;72:405-11.

Koopman LA, Corver WE, van Der Slik AR, Giphart MJ, Fleuren GJ. Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med 2000;191:961-76.

Fausch SC, Fahey LM, Da Silva DM, Kast WM. Human papillomavirus can escape immune recognition through Langerhans cell phosphoinositide 3-kinase activation. J Immunol 2005;174:7172-8.

Burchell AJ, Winer RL, de Sanjose S, Franco EL. Chapter 6: Epidemiology and transmission dynamics of genital HPV infection. Vaccine 2006;24(Suppl 3):S52-61.

Publicado
2016-07-26
Cómo citar
1.
Rincón OL, Pareja LR, Jaramillo S, Aristizábal BH. Virus del papiloma humano, respuesta inmune y cáncer cervical: una relación compleja. Rev. Colomb. Obstet. Ginecol. [Internet]. 26 de julio de 2016 [citado 8 de diciembre de 2019];58(3):202-1. Disponible en: https://revista.fecolsog.org/index.php/rcog/article/view/452
Sección
Articulo de Revisión