The association between homocysteine-methionine and folate metabolism and pregnancy complicated by idiopathic intrauterine growth restriction - Preliminary data

Authors

  • Reggie García-Robles
  • Catalina Durán-Garzón
  • Paula Ayala-Ramírez
  • Joan Dayanna Pardo-Sabogal
  • Rodolfo Martínez-Díaz
  • Jaime Bernal-Villegas

DOI:

https://doi.org/10.18597/rcog.138

Keywords:

Homocysteine, methionine, folate, intrauterine growth restriction

Abstract

Objective: This work was aimed at evaluating the association between homocysteine-metionine and folate metabolism alteration and pregnancies complicated by idiopathic intrauterine growth restriction (IUGR). This was done by studying pre- and post-partum homocysteine, vitamin B12 and folate levels, as well as allele and genotype frequency for genetic polymorphisms from enzymes participating in the homocysteine-methionine and folate metabolic route in pregnant women having pregnancies complicated by idiopathic IUGR and physiological conditions during normal pregnancy.

Materials and methods: This was an analytical observational (cases and controls) pilot study. Eight pregnant women suffering IUGR were studied, as well as 21 pregnant women as control whose pregnancy had no complications and healthy newborn. Folate, vitamin and B12 homocysteine concentrations as well as postpartum homocysteine levels were analyzed during the third trimester of pregnancy. The pregnant women’s genotypes were determined formethylenetetrahydrofolate reductase (MTHFR) C677T, MTHFR A1298C, methionine synthase reductase (MTRR) A66G, cystathionine betasynthase (CBS) 844ins68, CBS 31pb VNTR, CBS C699T and CBS C1080T polymorphisms by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP).

Results: MTHFR C677T polymorphisms and the CBS 31bp VNTR 18/18 genotype (independently and in coexistence) were associated with low folate levels. The CBS 31bp VNTR 18/18 genotype alone and when coexisting with MTHFR C677T was associated with idiopathic IUGR.

Conclusions: Homocysteine-methionine and folate metabolism is important for embryo-fetus growth and development. Compromise of these metabolic routes is associated with pregnancy complications such as idiopathic IUGR. This study's preliminary results should encourage studying homocysteine-methionine and folate metabolism in complications regarding pregnancy such as IUGR and in physiological conditions during normal pregnancy in our population.

Author Biographies

Reggie García-Robles

Candidato a Doctor en Ciencias Biológicas, Instituto de Genética Humana, Pontificia Universidad Javeriana. Bogotá, Colombia.

Catalina Durán-Garzón

Estudiante de Biología, Instituto de Genética Humana, Pontificia Universidad Javeriana. Bogotá, Colombia.

Paula Ayala-Ramírez

Docente e Investigador, Instituto de Genética Humana, Pontificia Universidad Javeriana. Bogotá, Colombia.

Joan Dayanna Pardo-Sabogal

Docente e Investigador, Instituto de Investigación en Nutrición, Genética y Metabolismo, Universidad El Bosque. Bogotá, Colombia.

Rodolfo Martínez-Díaz

Ginecoobstetra del grupo de Medicina Materno-Fetal, Departamento de Ginecología y Obstetricia, Hospital Universitario San Ignacio. Bogotá, Colombia.

References

Muñoz L, Hernández R. Retardo de crecimiento intrauterino (RCIU) y sus alteraciones bioquímicas. NOVA 2005;3:88-94.

Vélez MP, Barros FC, Echavarría LG, Hormaza MP. Prevalencia de bajo peso al nacer y factores maternos asociados: Unidad de Atención y Protección Materno Infantil de la Clínica Universitaria Bolivariana, Medellín, Colombia. Rev Colomb Obstet Ginecol 2006;57:264-70.

Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 2003;69:1-7.

Prieto R, Matamala F, Rojas M. Morphometric and Morphological Characteristics of the Placenta at Term in Small Gestational Age Newborns (SGA) in the City of Temuco-Chile. Int J Morphol 2008;26:615-21.

Cuartas A. Retardo del crecimiento intrauterino. Iatreia 1995;8:18-25.

Maulik D, Frances J, Ragolia L. Fetal growth restriction: pathogenic mechanisms. Clin Obstet Gynecol 2006;49:219-27.

Maulik D. Fetal growth restriction: the etiology. Clin Obstet Gynecol 2006;49:228-35.

Kramer MS. The Epidemiology of Adverse Pregnancy Outcomes: An Overview. J Nutr 2003;133:1592S-6s.

Alexander GR, Kogan M, Bader D, Carlo W, Allen M, Mor J.US birth weight/gestational age-specific neonatal mortality: 1995-1997 rates for whites, Hispanics, and blacks. Pediatrics 2003;111:e61-6.10.

Philip AG. The evolution of neonatology. Pediatr Res 2005;58:799-815.

Kramer MS, Séguin L, Lydon J, Goulet L. Socioeconomic disparities in pregnancy outcome: why do the poor fare so poorly? Paediatr Perinat Epidemiol 2000;14:194-210.

Scifres CM, Nelson DM. Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol 2009;587:3453-8.

Cikot RJ, Steegers-Theunissen RP, Thomas CM, de Boo TM, Merkus HM, Steegers EA. Longitudinal vitamin and homocysteine levels in normal pregnancy. Br J Nutr 2001;85:49-58.

De la Calle M, Usandizaga R, Sancha M, Magdaleno F, Cabrillo E. Homocisteína, ácido fólico y vitaminas del grupo B en ginecología y obstetricia. Actualidad Obstet Ginecol 2001;13:237-48.

Menéndez A, Britto JE. Metabolismo de la homocisteína y su relación con la aterosclerosis. Rev Cubana Invest Biomed 1999;18:155-68.

Sharma P, Senthilkumar R, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, et al. Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 2006;5:1.

Forges T, Monnier P, Alberto JM, Guéant RM, Daval JL, Gueant JL. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update 2007;13:225-38.

Öztürk Ö, Karaer S, Dilara U, Efesoy A. Serum Homocysteine, Folate, and Vitamin B12 Levels in Pregnant and Non-Pregnant Women. Turkiye Klinikleri J Med Sci 2006;26:121-5.

Andersson A, Hultberg B, Brattstrom L, Isaksson A. Decreased serum homocysteine in pregnancy. Eur J Clin Chem Clin Biochem 1992;30:377-9.

Milman N, Byg KE, Hvas AM, Bergholt T, Eriksen L. Erythrocyte folate, plasma folate and plasma homocysteine during normal pregnancy and postpartum: a longitudinal study comprising 404 Danish women. Eur J Haematol 2006;76:200-5.

Guerra EM, Morita OE, Peres S, Pagliusi RA, Sampaio LF, D'Almeida V, et al. Low ratio of S-adenosylmethionine to S-adenosylhomocysteine is associated with vitamin deficiency in Brazilian pregnant women and newborns. Am J Clin Nutr 2004;80:1312-21.

Hague WM. Homocysteine and pregnancy. Best Pract Res Clin Obstet Gynaecol 2003;17:459-69.

Walker MC, Smith GN, Perkins SL, Keely EJ, Garner PR. Changes in homocysteine levels during normal pregnancy. Am J Obstet Gynecol 1999;180:660-4.

Montoya NE, Correa JC. Curvas de peso al nacer. Rev Salud Pública 2007;9:1-10.

Babson AL, Olson DR, Palmieri T, Ross AF, Becker DM, Mulqueen PJ. The immulite assay tube: a new approach to heterogeneous ligand assay. Clin Chem 1991;37:1521-2.

Shipchandler MT, Moore EG. Rapid, fully automated measurement of plasma homocyst (e) ine with the Abbott IMx analyzer. Clin Chem 1995;41:991-4.

Maniatis T, Fristsch E, Sambrook J. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 1982.

Bermúdez M, Briceño I, Gil F, Bernal J. Homocisteína y polimorfismos de cistationina B sintasa y metilentetrahidrofolato reductasa en población sana de Colombia. Colomb Med 2006;37:46-52.

van der Put NMJ, Blom HJ. Reply to Donnelly. Am J Hum Genet 2000;66:744-5.

Ananth CV, Elsasser DA, Kinzler WL, Peltier MR, Getahun D, Leclerc D, et al. Polymorphisms in methionine synthase reductase and betainehomocysteine S-methyltransferase genes: Risk of placental abruption. Mol Genet Metab 2007;91: 104-10.

Lievers KJ, Kluijtmans LA, Heil SG, Boers GH, Verhoef P, van Oppenraay-Emmerzaal D, et al. A 31 bp VNTR in the cystathionine beta-synthase (CBS) gene is associated with reduced CBS activity and elevated post-load homocysteine levels. Eur J Hum Genet 2001;9:583-9.

Afman LA, Lievers KJ, Kluijtmans LA, Trijbels FJ, Blom HJ. Gene-gene interaction between the cystathionine beta-synthase 31 base pair variable number of tandem repeats and the methylenetetrahydrofolate reductase 677C > T polymorphism on homocysteine levels and risk for neural tube defects. Mol Genet Metab 2003;78:211-5.

Gan YY, Chen CF. Novel alleles of 31-bp VNTR polymorphism in the human cystathionine B-synthase (CBS) gene were detected in healthy Asians. J Genet 2010;89:449-55.

Lievers KJA, Kluijtmans LAJ, Blom HJ, Wilson PW, Selhub J, Ordovas JM. Association of a 31bp VNTR in the CBS gene with postload homocysteine concentrations in the Framingham Offspring Study. Eur J Hum Genet 2006;14:1125-9.

Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000;132:365-86.

Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE- a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2010;38:D234-D6.

López E, Vilaseca MA, Lailla JM. Plasma total homocysteine in uncomplicated pregnancy and in preeclampsia. Eur J Obstet Gynecol Reprod Biol 2003;108:45-9.

González Gross M, Sola R, Castillo M. Folato: una vitamina en constante evolución. Med Clin 2002;119:627-35.

Stabler SP, Allen RH. Vitamin B12 deficiency as a worldwide problem. Annu Rev Nutr 2004;24: 299-326.

Aubard Y, Darodes N, Cantaloube M. Hyperhomocysteinemia and pregnancy-review of our present understanding and therapeutic implications. Eur J Obstet Gynecol Reprod Biol 2000;93:157-65.

Murphy MM, Scott JM, McPartlin JM, Fernandez-Ballart JD. The pregnancy-related decrease in fasting plasma homocysteine is not explained by folic acid supplementation, hemodilution, or a decrease in albumin in a longitudinal study. Am J Clin Nutr 2002;76:614-9.

Bonnette RE, Caudill MA, Boddie AM, Hutson AD, Kauwell GP, Bailey LB. Plasma homocyst(e)ine concentrations in pregnant and nonpregnant women with controlled folate intake 2. Obstet Gynecol 1998;92:167-70.

Patrick TE, Powers RW, Daftary AR, Ness RB, Roberts JM. Homocysteine and folic acid are inversely related in black women with preeclampsia. Hypertension 2004;43:1279-82.

Sanchez SE, Zhang C, Rene Malinow M, Ware- Jauregui S, Larrabure G, Williams MA. Plasma folate, vitamin B12, and homocyst(e)ine concentrations in preeclamptic and normotensive Peruvian women. Am J Epidemiol 2001;153:474-80.

Vollset SE, Refsum H, Irgens LM, Emblem BM, Tverdal A, Gjessing HK, et al. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine Study. Am J Clin Nutr 2000;71:962-8.

Cardona H, Cardona-Maya W, Gómez JG, Castañeda S, Gómez JM, Bedoya G, et al. Relationship between methylenetetrahydrofolate reductase polymorphism and homocysteine levels in women with recurrent pregnancy loss: a nutrigenetic perspective. Nutr Hosp 2008;23:277-82.

Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr 2006;83:993-1016.

Chávez DV, Velazco MR, Sanin LH, Levario M, Aguirre AA, Martínez LE. Relation Between Levls of Folic acid, Vitamin B12 and Maternal Homocysteine with Neural Tube Defects and Cleft Lip. Int J Morphol 2008;26:905-14.

López JS, Castilla EE, Orioli IM. Folic acid flour fortification: Impact on the frequencies of 52 congenital anomaly types in three South American countries. Am J Med Genet A 2010;152A:2444-58.

US Food and Drug Administration. Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Fed Regist 1996;61:8781-97.

Hertrampf E, Cortés F. Folic acid fortification of wheat flour: Chile. Nutr Rev 2004;62:S44-S8.

Schulpis K, Spiropoulos A, Gavrili S, Karikas G, Grigori C, Vlachos G, et al. Maternal–neonatal folate and vitamin B12 serum concentrations in Greeks and in Albanian immigrants. J Hum Nutr Diet 2004;17:443-8.

Garcia-Casal M, Osorio C, Landaeta M, Leets I, Matus P, Fazzino F, et al. High prevalence of folic acid and vitamin B12 deficiencies in infants, children, adolescents and pregnant women in Venezuela. Eur J Clin Nutr 2005;59:1064-70.

Forrellat M, Góms I, Gautier du Défaix H. Vitamina B12: metabolismo y aspectos clínicos de su deficiencia. Rev Cubana Hematol Inmunol Hemoter 1999;15: 159-74.

Green R. Is it time for vitamin B-12 fortification? What are the questions? Am J Clin Nutr 2009;89:712S-6S.

Carmel R. Mandatory fortification of the food supply with cobalamin: an idea whose time has not yet come. J Inherit Metab Dis 2011;34:67-73.

Ghezzi F, Tibiletti MG, Raio L, Di Naro E, Lischetti B, Taborelli M, et al. Idiopathic fetal intrauterine growth restriction: a possible inheritance pattern. Prenat Diagn 2003;23:259-64.

Ruoti M, Loú LA, Fabré E. Papel de homocisteína en el metabolismo celular y su relación con el embarazo. Progresos en diagnóstico y tratamiento prenatal 2003;15:32-4.

D’Uva M, Di Micco P, Strina I, Alviggi C, Iannuzzo M, Ranieri A, et al. Hyperhomocysteinemia in women with unexplained sterility or recurrent early pregnancy loss from Southern Italy: a preliminar y report. Thromb J 2007;5:10.

Engel SM, Olshan AF, Siega-Riz AM, Savitz DA, Chanock SJ. Polymorphisms in folate metabolizing genes and risk for spontaneous preterm and smallfor- gestational age birth. Am J Obstet Gynecol 2006;195:1231.e1-e11.

How to Cite

1.
García-Robles R, Durán-Garzón C, Ayala-Ramírez P, Pardo-Sabogal JD, Martínez-Díaz R, Bernal-Villegas J. The association between homocysteine-methionine and folate metabolism and pregnancy complicated by idiopathic intrauterine growth restriction - Preliminary data. Rev. colomb. obstet. ginecol. [Internet]. 2012 Dec. 20 [cited 2024 May 19];63(4):334-45. Available from: https://revista.fecolsog.org/index.php/rcog/article/view/138

Downloads

Download data is not yet available.

Published

2012-12-20

Issue

Section

Original Research
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo